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NUMERICAL CALCULATION OF RELATIVISTIC MULTIPLE-CAVITY SYSTEMS 

I. A. Sander, V. M. Sveshnikov, and N. G. Khavin UDC 518.5:538.3 

In the calculation of various electrophysical devices which use relativistic electron 
beams, it is necessary to consider the motion of a beam of charged particles in an external 
electromagnetic field and the self-fields (irrotational and solenoidal) of the beam. A 
multiple-cavity klystron is an example of such a device, in which the interaction between 
the relativistic electron beam and the radiation field in the cavities is significant. The 
numerical treatment of such processes is based on Maxwell's equations. 

In the present paper we describe the numerical algorithms and their computer program 
implementation in the framework of the package of applied programs ERANS [i] for the cal- 
culation of a relativistic beam of charged particles moving in extended multiple-cavity 
systems. The problem is split up into the following subproblems: i) the calculation of 
the input cavity into which an ungrouped flux of charged particles enters (oscillations 
in the cavity are excited and maintained by an external source, such as a current loop); 
2) the calculation of the flux in the drift tubes; 3) the calculation of the flux in the 
relay and output cavities; 4) the joining of the solutions of the first three problems. 

The problem is assumed to be axisymmetric and is treated in terms of the cylindrical 
coordinates r, z, 8, where the motion of the beam is mostly along the axis of symmetry z. 

Economy of calculation is the basic criterion used in choosing the numerical algo- 
rithms. In carrying through the calculations for different parts of the system, the most 
significant factors affecting the flux of charged particles for thatsPart of the system 
are taken into account. Inside the cavities the solenoidal fields E , H are taken into 
account, where the nonzero components of these fields are ErS, Ez S, and H e (the so-called 
E-field). In the drift tubes we take into account the azimuthal component of the self- 
magnetic field of the particles beam. External electric and magnetic fields act on the 
beam over the entire system, as does the irrotational field of the beam. The first five 
harmonics of the vector potential (see below) are used to calculate the solenoidal fields. 

The algorithms allow one to follow transient processes in separate parts of the sys- 
teml however, in the present paper we will be concerned mainly with steady-state, periodic 
processes. Our approach is illustrated on a problem of practical interest. 

We consider separately the algorithms for the solution of the above subproblems. The 
discussion is ordered in a convenient way for the description of the algorithms. The prob- 
lem of calculating the flux of charged particles in a resonant cavity reduces to finding 
the solution of the complete set of Maxwell's equations 

div E --p/eo; (I) 

rot E =--~oOH/Ot; (2)  

div tt  = O; (3) 
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rot H = j + %OE/Ot, (4) 

where E is the electric field, H is the magnetic field, p is the space charge density, 
j is the current density, e 0 is the permittivity of free space, ~0 is the magnetic permea- 
bility of free space, (e0~ 0 = c -2, c is the speed of light), t is the time. 

Maxwell's equations (1)-(4) must be supplemented by the equation of motion of the 
charged particles (with charge e) 

dp/dt -- e(E ~- 9o[VH]). (5)  

Here P = ?my is the momentum of the particle, m is its rest mass, v is the velocity, 7 = 
(i - v2/c2) -I/2 is the Lorentz factor, v = Ivl. 

Solution of the system (1)-(4) reduces [2] to determining the solenoidal E s , H and 
irrotational E I fields: E = ES + E I , div E s = 0, rot E I = 0. The solenoidal fields 
are calculated using equations 

E s ~dqh(t)A~(r), H ~ S '=  - -  ~ = qk (t) rot Ak (r), (6 )  
h = l  = 

where r is the position vector of the observation point and the ~1~(r) are the vector 
potentials satisfying 

$ 
(7)  

(A is the Laplacian, qk is the eigenvalue, F is the boundaryof the region under considera- 
tion, ( AkS)tg is the tangential component of the vector), and the coefficients qk(t) are 
determined from the solution of the equation 

2 

ddTqh + ~ ~Y . .  ~ohq~ = j j (r, t) A~ (r) dV, (8)  
V 

in which Qk is the Q-factor of the cavity at frequency C/qk. 

The irrotational field is found from the solution of Poisson's equation 

O(P I = 0. A~=--pts0, ~lr 1=0, ~ r  (9) 

Here �9 i s  d e f i n e d  such  t h a t  E I = - g r a d  ~ ; F 1 U  F 2 = F. 

The n u m e r i c a l  a l g o r i t h m s  f o r  t h e s e  p rob l ems  a r e  s i m i l a r  t o  t h o s e  c o n s i d e r e d  i n  [1] 
and i n c l u d e  t h e  f o l l o w i n g  b a s i c  s t e p s :  s o l u t i o n  o f  t h e  e i g e n v a l u e  p rob l em ( 7 ) ;  c a l c u l a t i o n  
o f  t h e  s o l e n o i d a l  and i r r o t a t i o n a l  f i e l d s ;  i n t e g r a t i o n  o f  t h e  e q u a t i o n s  o f  m o t i o n ;  c a l c u l a -  
t i o n  o f  t h e  c u r r e n t  d e n s i t y  and s p a c e  c h a r g e  d e n s i t y .  

An u n s t e a d y  p r o c e s s  in  t h e  c a v i t y  i s  r e p r e s e n t e d  as f o l l o w s .  The t i m e  i n t e r v a l  [ T I ,  
TF] u n d e r  c o n s i d e r a t i o n  i s  s p l i t  up i n t o  N T t ime  s t e p s  AT i = T i - T i _  1 ( i  = 1, 2, . . . ,  NT; 

T I = To < T 1 < . . .  < TNT = TF).  The e i g e n f u n c t i o n s  o f  t h e  v e c t o r  p o t e n t i a l  a r e  computed 
and s t o r e d  in  t h e  d a t a b a s e  o f  t h e  p rogram p a c k a g e  ~RANS. The e q u a t i o n s  o f  m o t i o n  a r e  i n t e g -  
r a t e d  t o  t = T~, u s i n g  t h e  e l e c t r i c  and m a g n e t i c  f i e l d s  c a l c u l a t e d  a t  t ime  t = T I .  The 
s o l u t i o n  o f  t h e  e q u a t i o n s  o f  m o t i o n  i s  used  t o  c a l c u l a t e  t h e  s p a c e  c h a r g e  and c u r r e n t  d e n - -  
s i t y  d i s t r i b u t i o n s .  Us ing  t h e s e  d i s t r i b u t i o n s ,  t h e  s o l e n o i d a l  and i r r o t a t i o n a l  f i e l d s  a r e  
recalculated at t = T I and the fields are assumed to be independent of time over the time 
interval AT 2. The charged particles are then propagated to the time T 2 and the whole pro- 
cess is repeated until the time t = T F is reached. 

The program EDIP [3] was used to calculate the eigenfunctions of the vector potential. 
The flux of charged particles is modeled by the "large" particle method. The equations 
of motion are solved numerically on the time interval [Ti_l, Ti] using the scheme described 
in [i] with a stepsize ~i ~ ATi. The solenoidal fields are calculated using [6], in which 
not more than the first five terms of the series are retained in the calculation. 

The right-hand side of (8) is evaluated by using the values of the integrand at the 
nodes of the computational network [i]. The following approximation formula is used to 
solve (8) in the interval t ~ [Ti_1, Ti]: 
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Ti ~ i--I i -- ~ i - - l \  
Xh . . . .  09~ qk  ~ xi-- 1 ~ h  " k  

X ~ 2 -  X i - 1  " 
�9 h ~ h A T  q'k = q~ -~  + ~ ~ ,  

where Fk i are the values of the right-hand side of (8) at the nodes and Xk i = (dqk/dt)i. 

The potential fields [given by (9)] are determined by means of a difference algorithm on 
a rectangular nonuniform network. The system of difference equations is solved by itera- 
tion [4]. 

The calculation of the input cavity has the following features. Oscillations in the 
cavity are excited and maintained by a current l(t) = I 0 cos mt (I 0 = const, ~ is the fre- 
quency) passing through a loop, which is approximated by a rectangle R: zi R ~ z ~ zf R, 

riR ~ r ~ rf R. The amplitudes qk(t) of the forced oscillations in the cavity are found 
RR 

f rom (8)  w i t h  t h e  r i g h t - h a n d  s i d e  g i v e n  by ~0I(t)s R S R =  R H%k i s  t h e  e componen t  

z i r  I 

o f  t h e  m a g n e t i c  f i e l d  i n d u c e d  in  t h e  c a v i t y ) .  The i n t e g r a l  i s  e v a l u a t e d  n u m e r i c a l l y  u s i n g  
s e c o n d - o r d e r  f o r m u l a s .  I n  t h e  c a s e  c o n s i d e r e d  h e r e ,  (8 )  h a s  t h e  u n i q u e  p e r i o d i c  s o l u t i o n  
q ( t )  = ~0IoQF~F -2 s R s i n  ~ t  a t  e = ~k" 

I n  a d d i t i o n  t o  t h e s e  f o r c e d  E - o s c i l l a t i o n s ,  t h e  s e l f - e l e c t r i c  and m a g n e t i c  f i e l d s  and 
t h e  e x t e r n a l  f i e l d  a l s o  a c t  on t h e  c h a r g e d  p a r t i c l e s  in  t h e  i n p u t  c a v i t y .  The e f f e c t  o f  
t h e  s e l f - m a g n e t i c  f i e l d  i s  t a k e n  i n t o  a c c o u n t  f o r  weak g r o u p i n g  o f  t h e  c h a r g e d  p a r t i c l e s  
by r e c a l c u l a t i n g  t h e  r componen t  o f  t h e  i r r o t a t i o n a l  e l e c t r i c  f i e l d  E r I  [ 5 ] :  ErN I = 
E r I / y  2 (ErN I i s  t h e  "new" v a l u e  o f  t h e  f i e l d ) .  The r e m a i n i n g  c a l c u l a t i o n s  o f  t h e  i n p u t  
c a v i t y  a r e  c a r r i e d  o u t  u s i n g  a l g o r i t h m s  s i m i l a r  t o  t h o s e  u s e d  in  t h e  c a l c u l a t i o n  o f  t h e  
r e l a y  c a v i t y .  

The f l u x  o f  c h a r g e d  p a r t i c l e s  in  t h e  d r i f t  t u b e s  i s  c a l c u l a t e d  a s s u m i n g  t h a t  t h e  r a d i a -  
t i o n  f i e l d s  in  t h e  t u b e s  a r e  s m a l l .  The e f f e c t s  o f  t h e  s p a c e  c h a r g e  and t h e  s e l f - m a g n e t i c  
f i e l d  o f  t h e  beam a r e  t a k e n  i n t o  a c c o u n t ,  a s  w e l l  as  t h e  e x t e r n a l  f i e l d s .  The i r r o t a t i o n a l  
e l e c t r i c  f i e l d s  in  t h e  d r i f t t u b e s  a r e  c a l c u l a t e d  by d i f f e r e n c e  m e t h o d s .  To s a v e  e x e c u t i o n  
t i m e ,  t h e  d i f f e r e n c e  n e t w o r k  i s  c h o s e n  t o  be  u n i f o r m  in  t h i s  c a s e  and t h e  s y s t e m  o f  d i f f e r -  
e n c e  e q u a t i o n s  c o n s t r u c t e d  on t h e  n e t w o r k  i s  s o l v e d  d i r e c t l y  by c y c l i c  r e d u c t i o n .  A modi -  
f i c a t i o n  o f  t h i s  method  was i m p l e m e n t e d  in  wh ich  t h e  p o t e n t i a l  c an  be c a l c u l a t e d  u s i n g  an 
a r b i t r a r y  ( n o t  o n l y  2 k + 1, whe re  k i s  an i n t e g e r )  number  o f  nodes  a l o n g  e a c h  o f  t h e  c o o r d i -  
n a t e  a x e s  [ 6 ] .  

The e f f e c t  o f  t h e  a z i m u t h a l  componen t  o f  t h e  s e l f - m a g n e t i c  f i e l d  on t h e  c h a r g e d  p a r t i -  
c l e s  moving in the tube was taken into account. This field was calculated from the formula 
[7] H 8 = I/2vR, where I is the conduction current through a cross section S of radius R 

(the displacement current Id= e 0 ~-TFdS is taken to be small in view of the assumed nature 
s 

of the fields in the tube). For weak grouping of the particle beam, the effect of the 
self-magnetic field can be taken into account using the algorithms described above. 

The solutions of the subproblems are joined together to form the solution of the ori- 
ginal problem in the following way. The computational region is divided up by the planes 
z = const into a set of subregions, each of which is either the input cavity, a drift tube, 
or the relay (output) cavity. The coordinates, velocities, and charges of the "large" 
particles leaving any of the subregions during each time step are stored in memory. This 
information is then read from memory and used as the initial conditions to continue the 
calculations into the next subregion. In this way, the solutions are joined from one sub- 
region to the next. The boundary condition for the electric potential ~ on the planes bound- 
ing a given subregion is 8~/SZlz=cons t = 0, which is satisfied accurately in the first few 
subregions of the multiple-cavity system. In the succeeding subregions it is necessary .to 
take the potential calculated in the preceding subregion as boundary conditions. 

This approach is the analog of a single iteration of the alternating method of Schwartz 
[8]. The numerical simulations show that the beam characteristics in the second iteration 
differ from those of the first iteration by a fraction of a percent. This indicates that 
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a single iteration is sufficient to obtain a solution of the problem with acceptable accu- 
racy. In the calculations in the relay cavity the convergence of the unsteady process to 
a periodic one was speeded up by using a solution obtained from the one-dimensional analy- 
tical theory [9] as the initial approximation. 

The numerical algorithms discussed here were run on the BESM-6 computer within the 
package of applied programs ~RANS [I], which consists of a library of program modules, a 
database, and the programming languages. The modules of the package were coded in FORTRAN, 
ALGOL-GDR, and MADLEN and they are maintained in libraries on magnetic tape or disk. The 
database of the package, stored on magnetic drums, tape, or disk, contains information 
needed to interrupt and restart the calculation, to join the subregions, and also contains 
the eigenvalues and eigenfunctions of the cavities. The input data for the problem and 
information on derived characteristics, such as the solenoidal fields and the radiative 
energy as functions of time, the field patterns at given time steps, the coordinates, velo- 
cities, and charges of the "large" particles, and so on, are described in [i0, ii]. The 
results are presented in the form of tables of numbers or plots. 

This package of programs was used to carry out the calculation for one element of a 
relativistic multiple-cavity klystron used in UHF energetics of linear accelerators (Fig. i). 
The element consists of two cavities (an input cavity ~z and a relay cavity ~3) and a drift 
tube ~2 between them. A tubular beam with a uniform current density enters the first cavity, 
whose parameters are a = 1.3.10 -2 m, h = 1.5"10 -2 m. The beam moves in a magnetic field 
directed along the z axis (Hr = 0.12.106 A/m in the first cavity and H T = 0.24"106 A/m in 
the other subregions). The beam parameters on entry into the computational region were 
chosen as: outer radius R F = 4-10 -3 m, inner radius R I = 10 -3 m, I = 50 A, y = 1.4. The 
beam obtains an initial velocity modulation inside the input cavity. Inside the drift tube 
(of radius R T = 5-10 -3 m, length I = 9.10 -2 m) the beam is grouped with respect to space 
charge density. The grouped beam then excites oscillations in the relay cavity, which has 
the same geometrical dimensions as the input cavity. The wavelength of the fundamental 
mode of oscillation is X l ~ 4.10 -2 m. The Q-factors of the input and relay cavities were 
calculated using the linear analytical theory in the one-dimensional approximation [9] with 
the charging of the cavities by the beam taken into account. 

The following computational parameters were used in the calculations: in the input and 
relay cavities the number of nodes of the difference network was N n = I000 and the number 
of large particles was Np = 200; in the drift tube N n = 3000, Np = 1200. 

The period T c of the oscillations in the input cavity was divided into 40 time steps. 
The time step was constant in all of the calculations. The value of the function o(t) = 

8- 

4 -  

4 8 r 0 4 8 r 
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I s Ez(O, z, t)dz was computed at each time step. 
0 

ties was controlled using the quantities ~ 

The periodicity of the solution in the cavi- 

t i ~ 
, where ti C (i = i, 2, 

t 
. . . )  are the zeroes of o(t), and oi = max Ia( t )[ .  For both cavities the quantities el, gi m 

c c 
t i ~ t < t  i + 1 

d e c r e a s e d  t o  f r a c t i o n s  o f  a p e r c e n t  a f t e r  80 t i m e  s t e p s ,  w h i c h  t o o k  a b o u t  0 , 5  h o f  e x e c u t i o n  
time on the B~SM-6. The periodicity of the process in the drift tube was established after 
240 time steps (2.5 h of execution time) and was verified by checking that the coordinates 
and velocities of "large" particles at times t and t + T c were equal, to within a fraction 
of a percent, for each cross section z = const. 

As an example of the results obtained from the numerical calculations, the character- 
istics of the electromagnetic field in the relay cavity ~3 are shown in Figs. 2-4. Figure 

' t f ( E ~ d V +  2 shows the time dependence of the energy of the electromagnetic field w = :---~-eo. 
v 

+po;HgdV, the function Ms(r) for z = const at the center of the cavity is shown in Fig. 
v 

3 for a fixed value of the time, and Fig. 4 shows the function EzS(r) for the same condi- 
tions. All quantities plotted in the figures are dimensionless: r = r(m)/r0, W = W(J)/W0, 

H 8 = Hs(V/m)/H0, Ez s = EzS(V/m)/E0, where r0. = i0 -a m, W 0 = i0 -a J, H 0 = 1,34.102 V/m, 

E 0 = 105 V/m. In Fig. 2, K t is the number of the time step, where K t = K t' - i00 (K t' is 

the number of the time step counted from the time of entry of the particles into ~3)- 
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